מהי T-Distribution?
מהי T-Distribution? התפלגות t, המכונה גם התפלגות t של התלמיד, היא סוג של התפלגות הסתברות הדומה להתפלגות הנורמלית עם צורת הפעמון שלה, אך בעלת זנבות כבדים יותר. הוא משמש להערכת פרמטרים של אוכלוסייה עבור גדלי מדגם קטנים או שונות לא ידועות. להפצות T יש סיכוי גדול יותר לערכים קיצוניים מאשר להתפלגויות רגילות, וכתוצאה מכך יש להן זנבות שמנים יותר. התפלגות ה-t היא הבסיס לסטטיסטיקה של בדיקות מחשוב.
מהי T-Distribution? – התפלגות ה-t היא הבסיס לסטטיסטיקה של בדיקות מחשוב.
מהי T-Distribution? – נקודות מרכזיות
מה אומרת לך הפצת T?
כבדות הזנב נקבעת על ידי פרמטר של התפלגות t הנקראת דרגות חופש, כאשר ערכים קטנים יותר נותנים זנבות כבדים יותר, ועם ערכים גבוהים יותר גורמים להתפלגות ה-t להידמות להתפלגות נורמלית סטנדרטית עם ממוצע של 0 וסטיית תקן של 1.
כאשר נלקח מדגם של n תצפיות מאוכלוסיה בחלוקה נורמלית שיש לה ממוצע M וסטיית תקן D, ממוצע המדגם, m, וסטיית התקן של המדגם, d, יהיו שונים מ-M ו-D בגלל האקראיות של המדגם.
ניתן לחשב את ציון Az עם סטיית התקן של האוכלוסייה כ-Z = (x – M)/D, ולערך זה יש את ההתפלגות הנורמלית עם ממוצע 0 וסטיית תקן 1. אך כאשר משתמשים בסטיית התקן המשוערת, מחושב ציון t כמו T = (m – M)/{d/sqrt(n)}, וההבדל בין d ו-D הופך את ההתפלגות להתפלגות t עם (n – 1) דרגות חופש במקום ההתפלגות הנורמלית עם ממוצע 0 ו סטיית תקן 1.
דוגמה כיצד להשתמש בהפצת T
קח את הדוגמה הבאה לאופן השימוש בהפצות t בניתוח סטטיסטי. ראשית, זכור שרווח סמך עבור הממוצע הוא טווח של ערכים, המחושב מהנתונים, שנועד ללכוד ממוצע של "אוכלוסיה". מרווח זה הוא m +- t*d/sqrt(n), כאשר t הוא ערך קריטי מהתפלגות t.
לדוגמה, רווח סמך של 95% לתשואה הממוצעת של מדד הדאו ג'ונס (DJIA) ב-27 ימי המסחר שלפני ה-11 בספטמבר 2001 הוא -0.33%, (+/- 2.055) * 1.07 / sqrt( 27), נותן תשואה ממוצעת (מתמשכת) כמספר כלשהו בין -0.75% ל-+0.09%. המספר 2.055, כמות השגיאות הסטנדרטיות להתאמה לפיה, נמצא מהתפלגות t.
T-Distribution לעומת התפלגות נורמלית
התפלגויות נורמליות משמשות כאשר ההנחה היא שהתפלגות האוכלוסייה היא נורמלית. התפלגות ה-t דומה להתפלגות הנורמלית, רק עם זנבות שמנים יותר. שניהם מניחים אוכלוסייה מפוזרת נורמלית. לפיכך להפצות T יש קורטוזיס גבוה יותר מהתפלגות רגילות. ההסתברות לקבל ערכים רחוקים מאוד מהממוצע גדולה יותר עם התפלגות t מאשר התפלגות נורמלית.
התפלגות נורמלית לעומת t.
מגבלות השימוש ב-T-Distribution
התפלגות ה-t יכולה להטות את הדיוק ביחס להתפלגות הנורמלית. החסרון שלו מתעורר רק כאשר יש צורך בנורמליות מושלמת. יש להשתמש בהתפלגות t רק כאשר סטיית התקן של האוכלוסייה אינה ידועה. אם סטיית התקן של האוכלוסייה ידועה וגודל המדגם גדול מספיק, יש להשתמש בהתפלגות הנורמלית לקבלת תוצאות טובות יותר.
מהי התפלגות ה-t בסטטיסטיקה?
התפלגות ה-t משמשת בסטטיסטיקה כדי להעריך את פרמטרי האוכלוסייה עבור גדלי מדגם קטנים או שונות בלתי מוגדרת. זה מכונה גם התפלגות t של הסטודנט.
מתי יש להשתמש בהפצת t?
יש להשתמש בהתפלגות t אם גודל מדגם האוכלוסייה קטן וסטיית התקן אינה ידועה. אם לא, אז יש להשתמש בהתפלגות הנורמלית.
מה זאת אומרת התפלגות נורמלית?
התפלגות נורמלית היא כינוי לעקומת פעמון הסתברות. זה נקרא גם התפלגות גאוסית.
סיכום ומסקנות
התפלגות ה-t משמשת בסטטיסטיקה כדי להעריך את המשמעות של פרמטרי אוכלוסייה עבור גדלים קטנים של מדגם או וריאציות לא ידועות. כמו ההתפלגות הנורמלית, הוא בצורת פעמון וסימטרי. בניגוד להתפלגות רגילות, יש לו זנבות כבדים יותר, מה שמביא לסיכוי גדול יותר לערכים קיצוניים.