סימולציה של מונטה קרלו
סימולציה של מונטה קרלו – הדמיות מונטה קרלו משמשות למודל ההסתברות לתוצאות שונות בתהליך שלא ניתן לחזות אותו בקלות בגלל התערבות של משתנים אקראיים. זוהי טכניקה המשמשת להבנת ההשפעה של סיכון ואי ודאות במודלים של חיזוי.
נקודות מפתח
- הדמיית מונטה קרלו היא מודל המשמש לחיזוי ההסתברות לתוצאות שונות כאשר קיימת התערבות של משתנים אקראיים.
- הדמיות מונטה קרלו עוזרות להסביר את ההשפעה של סיכון ואי ודאות במודלים של חיזוי וחיזוי.
- מגוון תחומים משתמשים בסימולציות של מונטה קרלו, כולל פיננסים, הנדסה, שרשרת אספקה ומדע.
- הבסיס של הדמיית מונטה קרלו כולל הקצאת ערכים מרובים למשתנה לא בטוח כדי להשיג תוצאות מרובות ואז לממוצע התוצאות לקבלת אומדן.
- הדמיות מונטה קרלו מניחות שווקים יעילים לחלוטין.
ניתן להשתמש בסימולציה של מונטה קרלו כדי להתמודד עם מגוון בעיות כמעט בכל תחומים כמו פיננסים, הנדסה, שרשרת אספקה ומדע. זה מכונה גם סימולציה של הסתברות מרובה.
הבנת סימולציה של מונטה קרלו
כאשר אנו מתמודדים עם אי ודאות משמעותית בתהליך תחזית או הערכה, במקום להחליף את המשתנה הלא בטוח במספר ממוצע יחיד, סימולציה של מונטה קרלו עשויה להתגלות כפתרון טוב יותר על ידי שימוש בערכים מרובים.
מאחר שעסקים ופיננסים מושפעים על ידי משתנים אקראיים, להדמיות של מונטה קרלו יש מגוון עצום של יישומים פוטנציאליים בתחומים אלה. הם משמשים כדי לאמוד את ההסתברות לחריגת עלויות בפרויקטים גדולים ואת הסבירות שמחיר נכס ינוע בצורה מסוימת.
הטלקום משתמש בהן כדי להעריך את ביצועי הרשת בתרחישים שונים, ועוזר להם לבצע אופטימיזציה של הרשת. אנליסטים משתמשים בהם כדי להעריך את הסיכון שישות תחדל כברירת מחדל ולנתח נגזרים כמו אופציות.
להדמיות של מונטה קרלו יש אינספור יישומים מחוץ לעסקים ולפיננסים, כגון בתחום המטאורולוגיה, האסטרונומיה ופיזיקת החלקיקים.
היסטוריית סימולציה של מונטה קרלו
סימולציות של מונטה קרלו נקראות על שם יעד ההימורים הפופולרי במונקו, מכיוון שתוצאות מקריות ותוצאות אקראיות הן מרכזיות בטכניקת מונטה קרלו, ממש כמו במשחקים כמו רולטה, קוביות ומכונות מזל.
הטכניקה פותחה לראשונה על ידי סטניסלב אולאם, מתמטיקאי שעבד על פרויקט מנהטן. לאחר המלחמה, בזמן שהתאושש מניתוחי מוח, אולאם שיחק אינספור משחקי סוליטר(משחק יחידי). הוא התחיל להתעניין לתכנן את התוצאות של כל אחד מהמשחקים הללו על מנת לקבוע את ההסתברות לזכייה. לאחר ששיתף את ג’ון פון נוימן ברעיון שלו, שיתפו השניים פעולה בפיתוח הדמיית מונטה קרלו.
שיטת סימולציה של מונטה קרלו
הבסיס של הדמיית מונטה קרלו הוא שלא ניתן לקבוע את ההסתברות לתוצאות משתנות בגלל הפרעה משתנה אקראית. לכן, הדמיית מונטה קרלו מתמקדת בחזרה מתמדת של דגימות אקראיות כדי להשיג תוצאות מסוימות.
סימולציה של מונטה קרלו לוקחת את המשתנה שיש לו חוסר וודאות ומקצה לו ערך אקראי. לאחר מכן המודל מופעל ותוצאה מסופקת. תהליך זה חוזר על עצמו שוב ושוב תוך הקצאת המשתנה המדובר עם ערכים רבים ושונים. לאחר השלמת הסימולציה, ממוצעות התוצאות בממוצע יחד כדי לספק אומדן.